数据模型三要素是什么?
数据模型的三要素:【数据结构】、【数据操作】、【数据的完整性约束】
(1):数据结构,就是前面说的数据在数据区中的存储结构,在关系模型中就是采用的关系模型了,就是“二维表”的形式。
(2):数据操作,指的是对数据的一些操作,包括查询、删除、更新、插入等等。
(3):数据的完整性约束:就是对所存数据的约束规则,有实体完整性、参照完整性等等,就是取值唯一、不能为空等一系列操作。
数据分析模型和方法有哪些?
1、分类分析数据分析法
在数据分析中,如果将数据进行分类就能够更好的分析。分类分析是将一些未知类别的部分放进我们已经分好类别中的其中某一类;或者将对一些数据进行分析,把这些数据归纳到接近这一程度的类别,并按接近这一程度对观测对象给出合理的分类。这样才能够更好的进行分析数据。
2、对比分析数据分析方法
很多数据分析也是经常使用对比分析数据分析方法。对比分析法通常是把两个相互有联系的数据进行比较,从数量上展示和说明研究对象在某一标准的数量进行比较,从中发现其他的差异,以及各种关系是否协调。
3、相关分析数据分析法
相关分析数据分析法也是一种比较常见数据分析方法,相关分析是指研究变量之间相互关系的一类分析方法。按是否区别自变量和因变量为标准一般分为两类:一类是明确自变量和因变量的关系;另一类是不区分因果关系,只研究变量之间是否相关,相关方向和密切程度的分析方法。
4、综合分析数据分析法
层次分析法,是一种实用的多目标或多方案的决策方法。由于他在处理复杂的决策问题上的实用性和有效性,而层次分析数据分析法在世界范围得到广泛的应用。它的应用已遍及经济计划和管理,能源政策和分配,行为科学、军事指挥、运输、农业、教育、医疗和环境等多领域。
数据分析师最常用的3大数据分析法
1、对比分析
首先是绝对值和相对值的对比,主要是它反映的是一个某段时间状态,他可以反应一段时间内工作的成果。那么要衡量这个成果的具体大小,就需要借助环比和同比分析,通过同比和环比的分析,可以了解同期活动效果之间的差异,也可以了解上一个时期与这个时期的差别。
其次还可以通过横向对比和纵向对比来分析,横向对比的一个例子是在空间维度,即同种类型的不同对象,比如电商当中,我们经常把客户分为新客和老客,不同客户之间可能会有相同的指标,例如营业额、客单价等等。还有可能是不同时期、不同渠道之间的份额差异,通过这些,可以分析渠道之间的变化趋势。
2、细分分析
细分分当中的第一点是分类分析,本质上还是化整为零,通过拆解不同的模块进行单独的分析,比如说我们可以划分产品的类目、价格带、折扣带、年份等等,经过这样划分之后,什么时候需要主打什么样的产品,就会又一个清晰的概念。
人-货-场分析主要用于竞品分析或者是竞店分析,从客户、商品、场景三个维度出发,分析自己的客户和竞品的客户之间到底有什么差别,找到差异点之后才能对竞品进行精准打击,把对方的客户转化为自己的客户。
3、转化分析
转化分析的最常用的工具是漏斗模型,就是客户从浏览、收藏、加购、支付、复购等等一系列的操作转化,任何一个阶段转化率的变化就会引起结果的很大变化,而建立转化路径分析之后,就会很方便从结果推倒原因,从而进行针对性的优化。